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Dual-phase steels

▶ Good strength-ductility trade-off

▶ Good formability

▶ Low production cost
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Experimental-numerical analysis

Combining experiments and simulations

▶ Calibrate models

▶ Fully controlled

▶ Easily repeatable

▶ Additional information

Study influence of certain ”ingredients”
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Unknown sub-surface microstructure?

▶ Limits the analysis to 2D

▶ Influence of 2 to 3 sub-surface grains
(Zheghadi et al. 2008, Diehl et al. 2016)
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Experimental-numerical analysis
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Experimental-numerical analysis
Experiment CP simulation

(Tasan et al. 2014)

Our goal is to look at more specific features of the
microstructure

Sub-surface effects become more critical
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Experimental framework

Remove sub-surface structure?
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Measured deformation in experiment on ferrite

x-displacement y-displacement
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Measured deformation in experiment on ferrite

x-displacement y-displacement Equivalent strain
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Geometry and mesh of ferrite microstructure
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Geometry and mesh of ferrite microstructure
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Simulation of ferrite

Crystal Plasticity FEM

Multiplicative split
F = Fe · Fp

Plastic velocity gradient
Lp = Ḟp · F−1

p =
∑N

α=1 γ̇
α m⃗α

0 ⊗ n⃗α0

Simulation
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Simulation of ferrite

Experiment Simulation
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Dual-phase steel area
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Crystal Plasticity Simulation

Experiment Simulation
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Mechanical Behavior of Martensite
Not that brittle after all?

▶ Strains over 100% in DP (Ghadbeigi et al. 2010)

▶ Complex hierarchical microstructure

▶ Sliding over substructure boundaries

▶ Possible explanation: softer retained austenite (Maresca et

al. 2014)

(Maresca et al. 2014) (Du et al. 2016, 2019)
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Modeling substructure boundary sliding

(Rezazadeh et al. 2022)

Austenite to martensite transformation

▶ Not all austenite transforms

▶ KS orientation relationship

▶ 3 austenite slip systems aligned with habit plane

Plastic velocity gradient

Lp =
∑12

αM=1 γ̇
αM m⃗αM

0 ⊗ n⃗αM

0

+ϕA

∑3
αA=1 γ̇

αA m⃗αA

0 ⊗ n⃗αA

0
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Dual-phase steel including habit plane slip

Experiment Simulation

Can we get an even better match?
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The discrete slip plane model for ferrite

Crystal plasticity model with properties that are
(Wijnen et al. 2021)

▶ Heterogeneous

▶ Stochastic
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The discrete slip plane model for martensite
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The final result

Experiment Simulation
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Summary

Integrated experimental-numerical framework

▶ Removes sub-surface effects

▶ One-to-one comparisons of simulations and experiments

Takeaway points

▶ Softer substructure boundary sliding mechanism in martensite

▶ Stochastic effects needed for small scales
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Thank you




