

ON-LINE MONITORING TECHNIQUE FOR BONDED JOINTS USING FIBER BRAGG GRATING SENSORS IN A MARINE ENVIRONMENT

Partner: Com&Sens Speaker: Dr. Ir. Geert Luyckx 21/10/2021

CONTENT

- Com&Sens at a glance
- Requirements for a monitoring system of bonded joints in a marine environment
- Monitoring of bonded hybrid joints laboratory and field testing
- Conclusions/future work

CONTENT

Com&Sens at a glance

- Requirements for a monitoring system of bonded joints in a marine environment
- Monitoring of bonded hybrid joints laboratory and field testing
- Conclusions/future work

SENSORS DESIGNED FOR HARSH ENVIRONMENTS

WE ENGINEER, PRODUCE AND IMPLEMENT CUSTOMIZED COMPOSITES SENSING TAPES FOR HARSH ENVIRONMENTS.

EMBEDDED OR SURFACE MOUNTED COMPOSITES BASED FBG OPTICAL FIBER SENSORS

FORERUNNERS IN FIBER OPTIC SENSING

WE ENGINEER, PRODUCE AND IMPLEMENT FIBER OPTIC SENSING TECHNOLOGIES FOR STRUCTURAL HEALTH MONITORING OF STRUCTURES

COM&SENS WITHIN QUALIFY

- Monitoring system for the bondline between composite superstructure and metal hull
- Detect crack and map deformation versus disbond length
- Sensors fit for purpose

- Point sensor (semi-distributed)
- Absolute sensor properties
- Sensor is a passive component
- No electrical interference
- Simultaneous read-out: one fibre 20-40 sensors!
- Extensive sensor network

OFFICIAL DTG SOLUTION PARTN

CONTENT

- Com&Sens at a glance
- Requirements for a monitoring system of bonded joints in a marine environment
- Monitoring of bonded hybrid joints laboratory and field testing
- Conclusions/future work

REQUIREMENTS FOR A MONITORING SYSTEM OF BONDED JOINTS FOR MARINE/OFFSHORE INDUSTRY Withstand environmental operating conditions

Sea water resistance Corrosion danger and disconnection of the sensor

Temperature range: -40 to +70°C Resistance Compensation for temperature effect

Good strain transfer

Reliability/Repairability

SENSOR SET-UP IN QUALIFY

Flat type (composite tape, ~5mm width)

Round type (composite rod, ~0.5mm – 2mm diam)

Sensing Tape based on a Rapid, reliable and easy Installation Procedure

COMPOSITE STRIP SENSOR

- Reinforced fibre optics
- Embedding and surface mounting
- In-house production

UNIQUE SELLING POINTS

- ROBUSTNESS
- FAST INSTALLATION TIME
- VERSATILE

Sensor set-up

- 1. Surface treatment
 - Coarse sanding/Bristle blasting
 - Cleaning (Isopropanol)
- 2. Glue sensor
 - Put sensor line in place
 - Apply glue over 6 to10 cm
 - UV cure (3 min)
- 3. Protection:

TEMPERATURE

- Buckling experiments with different resins for the STRIP sensor
- Heat deflection temperature (HDT) when buckling occurs
 - Glass transition temperature
 - Curing degree

Qualify specifications of +70°C

Average HDT @ different coil diameters:

Resin	15 cm	10 cm	6 cm
CS_2801R	81°C	51.4 °C	/
CS_2813R	102°C	/	47.2°C

Temperature Compensation

- How to distinct between temperature induced strains and strains due to mechanical loads?
- Different techniques
 - Temperature compensation plate
 - Using the CTE and compensate mathematically
- Different covering methods
 - No covering
 - Anti-corrosion tape
 - Anti-corrosion and reflective tape

STRAIN TRANSFER

- Question: How well is the strain of the structure transferred to the sensor?
- Tested transfer between sensor fiber and:
 - Composite
 - Steel
- Used STRIP sensor:
 - Type: Rod
 - Resin: CS_2813R
 - Glue: CS_01

REPAIRABILITY

- Enabling the reparation of the egress point
- Based self written
 waveguide technology

Repairability

Procedure:

- Alignment of embedded/external
- Make an optical connection
- Add robust bracket

Results:

- Developed in a clean room (imec labs at UGhent)
- Transfer to industrial lab
- (C&S facilities in Eke)
- FBG peak detection Software
- Automatic alignment

CONTENT

- Com&Sens at a glance
- Requirements for a monitoring system of bonded joints in a marine environment
- Monitoring of bonded hybrid joints laboratory and field testing
- Conclusions/future work

MONITORING BONDED JOINTS IN THE MARINE/OFFSHORE INDUSTRY

LABORATORY TESTING

IN FIELD APPLICATION

FROM LAB TO IN FIELD TESTING

- Main results:
 - Lab testing
 - Crack detection and follow up of
 - Tensile sample
 - Arcan sample
 - FBG measurements compare to DIC measurements (not for this presentation)

In-Field testing

- Succesfull installation
- First promising results
- Reported in: D2.1.1 Structural integrity assessment of the hybrid structure

FROM LAB TO IN FIELD TESTING

- Main results:
 - Lab testing
 - Crack detection and follow up of
 - Tensile sample
 - Arcan sample
 - FBG measurements compare to DIC measurements (not for this presentation)

In-Field testing

- Succesfull installation
- First promising results
- Reported in: D2.1.1 Structural integrity assessment of the hybrid structure

FROM LAB TO IN FIELD TESTING

Main results:

- Lab testing
 - Crack detection and follow up of
 - Tensile sample
 - Arcan sample
- FBG measurements compare to DIC measurements (not for this presentation)

In-Field testing

- Succesfull installation
- First promising results
- Reported in: D2.1.1 Structural integrity assessment of the hybrid structure

TENSILE TEST

Quasi static tensile test@ UgentProgressive loading cycles

Sensor configuration

100

-0

Technological

Strain results

Technological innovation

GENT

UNIVERSITEIT

adding value by

CONFIDENTIAL INFORMATION – PROPERTY OF COM&SENS

Processed strain results – shear transfer

600

ch1: Strip sensor line on the upper joint

Failure

Processed strain results – different methods

- Crack propagation can be followed by looking at the shear transfer
- Different representations and all show a clear crack detection
- Strain vs time data contains signature of crack propagation

ARCAN TEST

- Quasi static arcan test@ Ugent
- Configuration:
 - 4 sensor lines on the steel flanges with 15 cm spacing
 - 3 reference sensors on each side with 30 cm spacing

Arcan test – Crack propagation

FRONT B 2 3 4 5 6 6 Samsung Dual Camera Opgenomen met Galaxy A40

IN FIELD APPLICATION

FBG_ACC ACC_POS3_Z_nr2

Joint

Deformation

Configuration:

Accelerometer (x, y, z)

- 2 sensor lines on the steel flang and composite flange
- 2m spacing

Installation on the (aluminium) hull and Superstructure of the ship

Cable routing and FBG system installation

- The Com&Sens FBG System is placed in the battery compartment
- System contains:
- FBGS read-out unit (interrogator)
- PC
- Cloudgate for internet connection
- Power conversion units
- Temperature measurement to control the ventilation

IN FIELD APPLICATION ALL RESULTS

- Succesfull measurements during sea trials
- Syncing with other signals
- Relate strain with events

IN FIELD APPLICATION – TEMPERATURE EFFECT

- Temperature effect
- Heating up of the engine/hold compartment
- Different CTE's of joint materials
- CTE_{ALU}> CTE_{GFRP}
- Look at event monitoring

Slow effect – no temperature readings present Event detection

IN FIELD APPLICATION – EVENTS

IN FIELD APPLICATION – ACCELERATIONS/EMERGENCY BREAKS

IN FIELD APPLICATION- STEER TUNING SHIP

IN FIELD APPLICATION- STEER TUNING SHIP

CONTENT

- Com&Sens at a glance
- Requirements for a monitoring system of bonded joints in a marine environment
- Monitoring of bonded hybrid joints laboratory and field testing
- Conclusions/future work

CONCLUSION/FUTURE WORK

- Marine requirements are met new sensor raw materials (sea water, temperature, strain transfer)
- Promissing technology for <u>repairing</u> of embedded OF sensors
- Succesfull <u>monitoring of cracks</u> in bonded joints
- SHM filosofy developped
 - Better understanding of position of sensors
 - Use of FE to understand joint behaviour
 - Data handling
- Future work: long term monitoring of already installed monitoring system

0.0008 0.0006 0.0004 0.0002 61500 58000 61000 -0.0002 -0.0004 -0.0006 - 0 mm disconnected ---- 0 mm disconnected 600 mm disconnected 600 mm disconnecter 900 mm disconnected - 900 mm disconnected 1200 mm disconnected — 1200 mm disconnected 1500 mm disconnected —— 1500 mm disconnected

FE top-von-Mises-str

This research was carried out within the project "QUALIFY – Enabling Qualification of Hybrid Joints for Lightweight and Safe Maritime Transport", co-funded by the INTERREG 2SeasMers Zeeën programme <u>http://www.interreg2seas.eu/qualify</u>

