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Materials 4.0 @ Bosch
Background — Bosch Vision

BOSCHZUNDER

“Artificial intelligence is another area where we
have to do everything we can, to stay at the
head of the pack globally, or to get there.”

|| What will Bosch be like in 2025?
s | “Ouraim is to be a leading Al and loT
t4. company. Across every domain we work in, we
o are focusing on integrated products and Al.”

I\

in ess U ' PS-CT. ) BOSCH ,

To comply with the Bosch and PS-CT visionthere is a need for even deeper understanding
of materials and their behavior, which dictates process requirements and product
performance.

Integrating Al methods can make this possible!
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Materials 4.0 @ Bosch
Introduction Materials 4.0" project

» Project launched for advanced material characterization using “state-of-art” concepts.
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Materials 4.0 @ Bosch
Overview activities

Characteristics of microstructure .
Composition of material
Behavior & anisotropy

Forming limits .
- Material

: characterization
ot g, m@ﬁ Optimization of product and process
=t 2t _ Generate engineering relations
, Accurately apply know-how
oAl ﬁ’ﬂ’ﬂg T T Explore new solutions
(L0 o Model and

simulations

Artificial
e intelligence

Faster analysis
Explore new solutions
Collect new types data

Advanced handling & interpret data
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Materials 4.0 @ Bosch
Research topics

Material
characterization

é

Model and
simulations

“Classical” experimental-numerical analysis

Model fitting with experiments

* Parameter estimation on measurement data

(Advanced) material modeling
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Example la: Deep learning SEM analysis

Example 1b: Predict key material properties

Model and
simulations

Artificial
intelligence

Example 2a: Neural network RVE integration

Example 2b: Hybrid material modeling
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Materials 4.0 @ Bosch
1a) Deep learning SEM analysis

Ground
truth

SEM

Semantic segmentation
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el FROM: Azimi, S.M., Britz, D., Engstler, M. et al. Advanced Steel Microstructural Classification by Deep
FROM: Holm E.A., Cohn, R., Gao, N. et al. Overview: Conputer Vision and Machine Learning for Microstructural Charaderization and Learning Methods. Sci Rep 8, 2128 (2018). https:/doi.org/10.1038/s41598-018-20037-5
Analysis. Metall Mater Trans A 51, 5985-5999 (2020). https://doi.org/10.1007/s11661-020-06008-4
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Materials 4.0 @ Bosch
1b) Predict key material behavior

» Goal: Predict (key) material behavior based on “simple” material characteristics and properties.

composition <

process

settings
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Results
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Yield strength (MPa)

Ultimate tensile strength (MPa)

Elongation (%)

FROM: Xu, X., Wang, L., Zhu, G. et al. Predicting Tensile Properties of AZ31 MagnesiumAlloys by
Machine Learning. JOM 72, 3935-3942 (2020). https://doi.org/10.1007/511837-020-04343-w
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Materials 4.0 @ Bosch
2a) Example 2a: Neural network RVE integration

» Goal: Efficiently enrich product & process simulations with underlying (microscale) physics to increase accuracy.
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“classical” multi-scale simulation / “Al-enriched” multi-scale simulation \
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Materials 4.0 @ Bosch
2b) Example 2b: Hybrid (material) modeling

intelligence

» Goal: Enrich data-driven Al neural network with known physics to increase predictability.
» Physics Informed Neural Networks (PINNSs)
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Compute derivatives and
minimise undertying
eguation residual
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Ref: https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network /
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Materials 4.0 @ Bosch
Summary / outlook

» Use state-of-art characterization methods:

» Enrich models & simulations with proper and
extended know-how.

» Integrate Al methods to:
» Extract more information, faster;
» Explore (non-trivial) relations and solutions;

» Enrich numerical analysis for faster and more
accurate predictions;
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