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 Integrated steelmaking known to emit dust
 Dust emission from Tata Steel site in IJmuiden

– Nuisance to neighbours, public health concerns
 RIVM reports in 2019, 2021 & 2022:

– 2019-2021: elevated loads of metals and PAH in IJmond, especially Wijk aan Zee
 Deposited dust and as suspended fine dust in air
 Remains a major issue to solve

– Based on bulk chemical analyses
– Dust deposition: 
 Insufficient data for detailed, quantitative source apportionment
 General increase in metal loads with proximity to site
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Background – dust in the IJmond ‘Black snow’ – Feb 2021



 What are the sources and their quantitative contributions to deposited dust? 
 What are the sources of potentially toxic elements (PTE) / compounds in the dust?
 In which forms are PTE present (in which phases), with relevance for bioavailability?
 How can emissions be mitigated and monitored in the future?

 Not sufficient for us just to identify Tata Steel site as source of dust
 To address the dust emissions need to be much more specific:

– Which materials: 
 raw materials, products and by-products of iron- and steelmaking processes

– Emission points and events: 
 stack emissions, open storage, transport belts, slag handling 
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Key questions to be addressed by dust characterisation



 Dust deposits are:
– particulate materials – dominated by ~10-100 µm diameter particles
– reflecting contributions from multiple disparate sources

 Particles may have been modified greatly during emission, dispersal and post-deposition
– e.g. chemical weathering, acquiring surface contamination, breakage, re-aggregation into composite 

particles

 Which means:
– Every particle tells a story about its origin(s) and life history
– A dust deposit needs to be viewed in terms of particle populations
– Bulk chemical and mineralogical compositions of deposits reflect the ‘demographics’ of their constituent 

particles

 Place individual particles at the centre of characterisation approach
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Philosophy of Tata Steel dust characterisation approach
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Philosophy of Tata Steel dust characterisation approach*

Particle mineralogy  source-diagnostic phase assemblages
Particle appearance  offers extra criteria where mineralogy not diagnostic

* Ref erences:
Small et al., Environmental Sciences Europe 2020, 32(135)
Small et al., Minerals 2021, 11(9), 929



Outline of approach
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 Dust particles analysed by 
automated SEM-EDS spectral 
imaging (SI)

 Data processed with in-house 
PhAse Recognition and 
Characterisation (PARC) 
software

 Particles classified to 
populations  source 
apportionment

 Supported by independent 
quantitative X-ray diffraction 
(QXRD) analyses on bulk 
samples
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 Dust particles analysed by 
automated SEM-EDS spectral 
imaging (SI)

 Data processed with in-house 
PhAse Recognition and 
Characterisation (PARC) 
software

 Particles classified to 
populations  source 
apportionment

 Supported by independent 
quantitative X-ray diffraction 
(QXRD) analyses on bulk 
samples

Evolution in methods from 2019-present to deal with:

2019: Ad hoc samples from dust complaints / pro-active sampling on site
 c. 10 per month 

Start 2022: Systematic monitoring campaign (Roadmap+ programme)
 c. 80 samples each 2 weeks
 grid of locations, regular sampling intervals



Spectral imaging  phase maps and grain segmentation
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9
Grain populations

Basics of spectral imaging (SI) and PARC
y

eV
x

 SEM-EDS spectral imaging (SI) data cube:
– Complete EDS spectrum stored per SI pixel
– Processing of SI data cubes varies widely, depending on application
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Grain populations

Basics of spectral imaging (SI) and PARC
y

eV
x

Intensity 
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energy 
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Pixel spectrum
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threshold

 SEM-EDS spectral imaging (SI) data cube:
– Complete EDS spectrum stored per SI pixel
– Processing of SI data cubes varies widely, depending on application

 PARC processing:
– Pixels classified under (PARC-)groups by:
 1) Combination of peaks above global threshold energy and intensity

(1)
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Grain populations

Basics of spectral imaging (SI) and PARC
y

eV
x

Intensity 
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energy 
threshold 
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Pixel spectrum

Peaks above 
threshold

 SEM-EDS spectral imaging (SI) data cube:
– Complete EDS spectrum stored per SI pixel
– Processing of SI data cubes varies widely, depending on application

 PARC processing:
– Pixels classified under (PARC-)groups by:
 1) Combination of peaks above global threshold energy and intensity
 2) More complex (branching-)filtering criteria – ‘density plot’ approach

Density plot
Mg vs Fe intensity(1)

(2)

Group 
defined by 
polygon
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SEM-BSE

Grain populations

LOM-darkfield

 SEM-EDS spectral imaging:
– 15 kV acc. voltage
– c. 1 um spatial resolution (horizontal)
– Various beam currents and counting times used: 
 10 - 25 nA
 0.5 to 5 hours per analysis (grid) – depending on size, instrumentation*, 

counting statistics required
– c. 2.5 - 7.5 mm2 total analysed area
– 102 - 103 particles (grains) per sample

Spectral imaging acquisition

eV

 Jeol 7001
– Thermo Fisher Scientific 

system
– 2 SDD/EDS detectors; 

30mm2
 Zeiss Gemini 450 

– Oxford microanalysis 
system

– 2 SDD/EDS detectors; 
170mm2

 Jeol 7001
– Oxford microanalysis 

system
– 2 SDD/EDS detectors; 

170mm2

 2 EDS detectors mounted 
diametrically opposite each other 
mitigate topography effects

*
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SEM-BSE

PARC groupsGrain populations

LOM-darkfield

 SI data  PARC group segmentation
– > 200 groups
– Limits of spatial & chemical resolution
⇒Some degree of overlap/confusion 

between true phases
⇒See as ‘pseudo’-phases
⇒Sufficient for particle classification based 

on mineralogical criteria

PARC groups  phase map
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SEM-BSE

PARC groupsGrain populations

LOM-darkfield

 Grain segmentation currently based on SEM-
BSE image

 Image split into individual grains
 Major challenge: avoiding spurious merging / 

splitting 
 Work ongoing to utilise correlated light 

optical(LOM)  and chemical (SI) information 

Grain segmentation



Classifying grains under populations
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 Grain population model applied to classify grains

 Manually defined set of branching filters
– Based on PARC group area proportions per grain and functions 

thereof
– Numerous sub-compositions and mutual ratios between PARC 

groups used

 Overall structure and content of individual filters:
– Conceived based on expert knowledge of source materials
– Verified on reference materials wherever possible

 Indirect use made of statistical methods such as PCA and K-means 
clustering
– Informs choice of filters and thresholds

 Data can be subjected to machine learning approaches

Classifying grains under populations
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 Main challenges for both manual and machine learning 
approaches:

– Grain segmentation artefacts (mixing)

Classifying grains under populations: challenges

A
B

C

Merged as 
single grain

Tw o 
overlapping 
particles w ith 
discrete 
sources

Spurious 
classif ication as 
third source
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 Main challenges for both manual and machine learning 
approaches:

– Grain segmentation artefacts (mixing)

– Superficial layers obscuring substrate particle mineralogy 
 different sub-compositions need to be considered, not 
only raw area proportions

Classifying grains under populations: challenges
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 Main challenges for both manual and machine learning 
approaches:

– Grain segmentation artefacts (mixing)

– Superficial layers obscuring substrate particle mineralogy 
 different sub-compositions need to be considered, not 
only raw area proportions

– Overlapping mineralogy (PARC groups) of different 
materials
 when mineralogy alone not diagnostic

Classifying grains under populations: challenges
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SEM-BSE

PARC groupsGrain populations

LOM-darkfield

Classifying grains under populations: applied to image

 Grain population model applied
 Grains classified to populations
 Quantitative data yielded:

– Area ( volume) fractions of grain populations per sample  dust provenance information 
– PARC group makeup of grain populations  mineralogical information
– Quantitative SEM-EDS analyses  chemical information

Classification



Supporting QXRD analyses
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 Quantitative X-ray diffraction 
analysis

 Using Rietveld approach
 Quantify crystalline phase 

proportions per sample
 Supports interpretation of SEM-

EDS-PARC analyses in terms of 
true mineralogical phases

 QXRD  crystallographic 
definitions

 SEM-EDS-PARC  chemical 
definitions

Supporting QXRD analyses
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Verifying grain populations on reference materials

 Key steelworks-related dust sources include:
– Iron ore, sinter and pellets
– Slag material: e.g. from BOF converter process
– Coal and coke

 QXRD and PARC analyses of reference materials to help recognise them 
‘in the wild’



Verifying grain populations on reference materials
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 Reference samples of candidate dust sources
 Used for defining grain populations
 Establish discrimination performance
 Thereafter, verifying analyses in case of 

(enforced) changes in instrumentation / 
measurement conditions

PARC analyses of references



Verifying grain populations on reference materials
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 Model performs very well when applied to 
reference materials
–  Low degree of confusion

 More challenging in dust deposit samples:
– Alteration of particles vs original reference 

characteristics
– Mixing of disparate materials
 Genuine composite particles 
 Imperfect grain segmentation in image 

analysis step
 => mimicry and incorrect classification

PARC analyses of references



Verifying grain populations on reference materials
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Recognising animals one for one in the zoo: easy


Recognising them in the wild: harder

PARC analyses of references  Model performs very well when applied to 
reference materials
–  Low degree of confusion

 More challenging in dust deposit samples:
– Alteration of particles vs original reference 

characteristics
– Mixing of disparate materials
 Genuine composite particles 
 Imperfect grain segmentation in image 

analysis step
 => mimicry and incorrect classification



Pinpointing sources of V and Mn in dust deposits
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 Use quantitative EDS analyses of grains, 
grain populations and PARC groups 
(pseudo-phases)

 Locate the main source materials and carrier 
phases of potentially toxic elements

Concentration of element 
in grain population

Abundance of grain 
population in sample



Pinpointing sources of V and Mn in dust deposits
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 V and Mn as example in a dust deposit 
sample rich in steelworks-derived materials

 BOF converter slag emerges as main source 
of V and Mn

 Carrier phases:
– V: 
 Dicalcium silicate (C2S)
 Brownmillerite (C2(A,F))
 Weathering products after these

– Mn:
 Magnesio-wustite and oxidation 

products thereof
 Scarce Mn-Fe-oxide

Concentration of element 
in grain population

Abundance of grain 
population in sample



Pinpointing sources of V and Mn in dust deposits
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 Confirmation of distribution of V and Mn (and Fe) across large sample set in joint study with TNO

Steelmaking BOF slag related

Scarce additional Mn source: discrete Mn-Fe-oxide

Reworked mixed material: road dust, mixed soil

Calculated bulk-sample wt% contributions of grain populations 
(C-free basis)



Pinpointing sources of V and Mn in dust deposits
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 Mn also occurs more rarely in concentrated 
form

 Mn-Fe-oxide phase found in/on particles 
related to iron ore preparation

 Very low abundance and concentrated in 
scarce particles
– Only detectable with PARC approach, not 

with bulk sample QXRD



Detecting Pb-rich phase occurrence
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Detecting Pb-rich phase occurrence
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Crux of the methodology: discriminating Pb from S signal

35

Analyses performed at 15 kV  necessary 
spatial resolution
=> Need to distinguish Pb-M from S-K lines

Exploit subtle 
difference in 
peak position 
and shape
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Crux of the methodology: discriminating Pb from S signal
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Analyses performed at 15 kV  necessary 
spatial resolution
=> Need to distinguish Pb-M from S-K lines

Exploit subtle 
difference in 
peak position 
and shape

Use standard 
reference 
compounds 
(polished)

Calibrate 
discrimination of 
SI pixels:

Pb-rich

vs

S-rich, Pb-free

c235 = SI channel 235  2.35 eV



Crux of the methodology: discriminating Pb from S signal
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Exploit subtle 
difference in 
peak position 
and shape

Use standard 
reference 
compounds 
(polished)

Calibrate 
discrimination of 
SI pixels:

Pb-rich

vs

S-rich, Pb-free

Dust sample

c235 = SI channel 235  2.35 eV



Physical meaning of Pb-rich pixels in SI data
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Exploit subtle 
difference in 
peak position 
and shape

 Flag for Pb concentrated at:
 major element level (~ 10 wt%)
 on c. 1 µm length-scale

 What they capture:
– Clearly identifiable individual (sub)grains of discrete Pb 

phases
– Mixed signal from nano-scale sub-particles in/on other 

phases
 Less concentrated occurrence = not flagged

 N.B. local concentration ≠ bulk sample concentration

Discrete Pb-
phase > 1 µm

Sub-micron 
intergrowth/layer

Undetectable 
dispersed Pb

1 µm
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100%
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Testing on secondary standards: Pb-bearing dust SRMs
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 Tested on dust SRMs from NIST
– Range 0.3 – 4.3 wt% Pb mass fraction

 Strong linear correlation:
– Pb mass fraction vs area % Pb-rich pixels

 N.B. not a calibration curve for an alternative Pb 
mass fraction determination!

 => variation in total Pb mass fraction manifests in 
PARC-detectable discrete Pb phase occurrence

 Micro-nugget effect visible in lowest-Pb sample



Searching for insights on Pb occurrence and possible sources
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 What can we learn about 
Pb occurrence in dust 
deposits?



Application to IJmond dust deposits
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 Sampling around IJmond region, Feb 2021
 Clear variations in dust provenance

– Negligible to dominant steelworks contribution in dust

Fig. 8



Overall abundances of Pb-rich pixels in samples

43Fig. 10

Abundance of Pb-rich
pixels

Number of Pb-host 
grains

Abundance of Pb-rich
pixels – log scale



Overall abundances of Pb-rich pixels in samples
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Pb-occurrence
categories: 
Number of Pb-
rich pixels per 
grain (particle)

5 samples with elevated
abundance in at least 2 
of 3 their triplicate
analyses (areas)

Fig. 10

Abundance of Pb-rich
pixels

Number of Pb-host 
grains

Abundance of Pb-rich
pixels – log scale

3 separate areas analysed per sample



Overall abundances of Pb-rich pixels in samples
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Most Pb-rich pixels highly concentrated in/on 
scarce particles (<0.1 % by number)

Pb-occurrence
categories: 
Number of Pb-
rich pixels per 
grain (particle)

5 samples with elevated
abundance in at least 2 
of 3 their triplicate
analyses (areas)

Fig. 10

Abundance of Pb-rich
pixels

Number of Pb-host 
grains

Abundance of Pb-rich
pixels – log scale

3 separate areas analysed per sample



Overall abundances of Pb-rich pixels in samples
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Most Pb-rich pixels highly concentrated in/on 
scarce particles (<0.1 % by number)Pb-rich pixels 

sparsely
dispersed over 
c. 15 % of 
particles

Pb-occurrence
categories: 
Number of Pb-
rich pixels per 
grain (particle)

5 samples with elevated
abundance in at least 2 
of 3 their triplicate
analyses (areas)

Fig. 10

Abundance of Pb-rich
pixels

Number of Pb-host 
grains

Abundance of Pb-rich
pixels – log scale

3 separate areas analysed per sample



Most Pb-rich pixels generally concentrated in/on scarce 
particles
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57% of Pb-rich pixels 
contained in only 1.1% 
of the Pb-host grains

In turn, these are only 
0.018% of the total 
analysed grains 
(n=92000)

Pooling all samples: distribution of Pb over occurrence categories



Most Pb-rich pixels generally concentrated in/on scarce 
particles
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57% of Pb-rich pixels 
contained in only 1.1% 
of the Pb-host grains

In turn, these are only 
0.018% of the total 
analysed grains 
(n=92000)

Pooling all samples: distribution of Pb over occurrence categories

Challenge is to analyse enough
grains to quantify contributions from
such scarce but concentrated Pb 
occurrences
 (micro-)nugget effect in analyses



 Quantify contributions of Pb-rich pixels from 
different grain populations

 Per sample, pooled samples (not shown)
 Statistics regarding individual occurrences

  Insights on any associations between Pb 
and specific grain populations

Pb-rich pixels’ distribution over grain populations
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Grain population abundances

Contributions to Pb-rich pixels

Abundances of Pb-host grains



 Quantify contributions of Pb-rich pixels from 
different grain populations

 Per sample, pooled samples (not shown)
 Statistics regarding individual occurrences

  Insights on any associations between Pb 
and specific grain populations

 Those insights are for another 
presentation…

Pb-rich pixels’ distribution over grain populations
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Grain population abundances

Contributions to Pb-rich pixels

Abundances of Pb-host grains



Key examples of particles bearing Pb-rich phases
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Dense Pb-rich particle
 True micro-nuggets

Suspected glazed 
pottery shard

Composite particle –
many smaller sub-
particles (< 10 um) 
agglomerated. Diverse 
sources mixed together. 
Potentially road dust. 

Iron-ore sinter particle 
with Pb-rich sub-particle 
on surface

Scale bar: 32 µm

SEM-BSE PARC

Arrows and dark magenta indicate Pb-rich pixels



Conclusions: a new and useful method
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 Novel characterisation method for dust deposits in vicinity of steelworks
 Based on SEM-EDS spectral imaging with supporting QXRD analyses
 Analyses ~103 particles per sample in as little as 30 minutes 

– Scalable depending on statistical requirements / analytical resolution
 Automated processing classifies particles to populations based on mineralogical characteristics

 Provides quantitative information on:
– Provenance of dust particles
– Mineralogy and chemistry of dust particles
– Distribution and source of potentially toxic elements: focus on V, Mn, Pb

 Supports:
– Evaluation of environmental / health impact of dust deposition
– Mitigation of dust emissions from Tata Steel site



Conclusions: a new and useful method
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 Novel characterisation method for dust deposits in vicinity of steelworks
 Based on SEM-EDS spectral imaging with supporting QXRD analyses
 Analyses ~103 particles per sample in as little as 30 minutes 

– Scalable depending on statistical requirements / analytical resolution
 Automated processing classifies particles to populations based on mineralogical characteristics

 Provides quantitative information on:
– Provenance of dust particles
– Mineralogy and chemistry of dust particles
– Distribution and source of potentially toxic elements: focus on V, Mn, Pb

 Supports:
– Evaluation of environmental / health impact of dust deposition
– Mitigation of dust emissions from Tata Steel site

2022: New monitoring campaign on and 
around Tata Steel site: c. 80 samples 
collected and analysed each 2 weeks
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Do you have any questions?

Tata Steel
Department

www.tatasteeleurope.com
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