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o WAAM is one-of-a-kind manufacturing

o Huge varieties and shape complexity

o Heterogeneous fabrication conditions with variations

o Disparate data generated under different process conditions

AML3D

Industry Needs – A bit of motivation
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Campatelli et al. (2020); DOI: 10.1007/s40684-019-00071-y

Nagamatsu et. al. (2020); DOI: 10.1016/j.addma.2019.100896

Industry Needs – A bit of motivation

34% energy saving

Material removed
could be reduced
to 25%
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Design Process 
Simulation Geometrical 

Performance

Insight from performanceContinues improvement

Integrated WAAM   process controller

The overall used approach in the Aim2XL program
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❑ Motivation: How to quickly learn deformation of WAAM produced parts for 
compensation plan based on limited benchmark test artefacts?

❑ Background

❑ Shape deviation control in WAAM
✓ Assessing the deviation
✓ Shape transformation for deviation modelling
✓ Predictive deviation modelling using machine learning

❑ Summary and on-going research

Outline – the focus of this talk
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✓ We develop a framework that enables automated deviation modelling from point 
cloud data collected across different processes and shapes in WAAM.

Shape deviation control in WAAM
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Assessing the deviation

Shape deviation control in WAAM
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Specifications A
Machine Fronius TransPulsSynergic 3200 CMT R
Heat source GMAW power source
Deposition strategy Parallel overlapping
Voltage (V) 15.3
Current (A) 182.6
Travel speed  (mm/min) 420
Wire feed speed (mm/min) 6000
Interlayer temperature (C) 50-90
Wire material S690 (LNM MoNiVa)
Wire dimeter (mm) Ø 1.2 mm
Number of layers 19

✓ Processing parameters in the experiment

Assessing the deviation: Benchmark test artifact and 
processing parameters

45 mm height
6 mm thickness: Ø20, 30, 50, 80, 20
10 mm thickness: Ø50
18 mm thickness: Ø50



10

A1 A2

A3 A4

✓ Postprocess measurement data for inspecting part geometries

Assessing the deviation: Qualitative analysis
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𝑥∗, 𝑦∗

𝑥0, 𝑦0
Nominal Shape ∀0

Actual Shape ∀∗

Translation Rotation Scaling

❑ We transformed point cloud measurements

❑ Mathematical relationship

✓ 𝛽 𝜑𝑥, 𝜑𝑦 , 𝛼, ∆𝑥, ∆𝑦

✓ (𝑥∗, 𝑦∗, 1) 𝑇= 𝑀𝑠𝑀𝑅𝑀𝑇(𝑥0, 𝑦0, 1) 𝑇

✓ 𝑓 𝜃; 𝛽 = 𝑟∗ 𝜃; 𝛽, 𝑟0 𝜃 − 𝑟0 𝜃

Shape transformation for deviation modelling
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✓ Deviation profiles of cylinder A1 with a nominal 
radius of 60 mm at different layers 

Shape transformation for deviation modelling
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❑ We utilized Random Forest method 

✓ Input cell: 𝑟𝑛, 𝜃, 𝑧

✓ Output cell: deviation 

❑ We used various metrics to evaluate the models’ performance

✓ Mean Absolute Error: 𝑀𝐴𝐸 =
σ𝑖=1
𝑛 𝑦𝑖−𝑦𝑡

𝑛

✓ Mean Absolute Percentage Error: 𝑀𝐴𝑃𝐸 =
σ𝑖=1
𝑛 𝑦𝑖−𝑦𝑡

𝑦𝑖

𝑛
× 100

Predictive deviation modelling using machine learning
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Prediction Errors

MAE R2 MAPE (%)

A1 0.015 99.76 8.19
A2 0.014 99.81 7.37
A3 0.011 99.89 5.78
A4 0.007 99.91 3.26

Test dataTrain data

✓ We randomly selected 60% of the input data as training set

✓ We compared predicted values and observed values

Predictive deviation modelling using machine learning
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Observed deviation
Predicted deviation 

✓ The prediction results on two cylinder radii: A1 (60 mm) and A4 (15 mm) 

✓ The main patterns in shape deviation are captured

Predictive deviation modelling using machine learning
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❑ We develop a new framework to model the systematic deviations in WAAM
with limited experimental runs.
✓ The method combines a transformation perspective and a ML method.
✓ Random forest predicts the shape deviation of WAAM process with a

mean absolute percentage error of less than 8.2%.

❑ The deviation in a case study (cylindrical shapes) was presented – the
methodology will be implemented in other geometrical features systematically.

Broader Impacts
❑ Smarter control of WAAM with the potential of practical application for a large

community of AM users.

❑ This study will enable designers to evaluate the geometrical performance of
WAAM products prior to manufacturing.

Summary
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✓ Deviation modelling of cylinders under new processes
Specifications B
Heat source GMAW
Deposition strategy Weaving strategy
Voltage (V) 14.1-15.8
Current (A) 105-142
Travel speed  (mm/min) 170-1000

Wire material SS 316L
Wire dimeter (mm) Ø 1.2 mm
Number of layers 25

On-going research – Model Transfer 
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✓ Deviation modelling of new geometrical features and processes

On-going research – Model Transfer 
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❑ How can we transfer the model across processes in WAAM characterized by 
different process conditions without repeating previous procedures?

On-going research – Model Transfer 
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✓ There are variations in the deformation profile along the wall 
height from the 1st to the 19th layer

Assessing the deviation: Observation
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✓ Deviation profiles of cylinders (A1, A2, A3, and A4) 
with nominal radius of 60, 40, 25, and 15 mm

Shape transformation for deviation modelling


