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Industry Needs — A bit of motivation

WAAM is one-of-a-kind manufacturing

Huge varieties and shape complexity
Heterogeneous fabrication conditions with variations

O O O O

Disparate data generated under different process conditions




Industry Needs — A bit of motivation
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Campatelli et al. (2020); DOI: 10.1007/s40684-019-00071-y

Nagamatsu et. al. (2020); DOI: 10.1016/j.addma.2019.100896

34% energy saving

Material removed
could be reduced
to 25%
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Outline — the focus of this talk

O Motivation: How to quickly learn deformation of WAAM produced parts for
compensation plan based on limited benchmark test artefacts?

O Background
O Shape deviation control in WAAM
v' Assessing the deviation

v Shape transformation for deviation modelling
v Predictive deviation modelling using machine learning

0 Summary and on-going research
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Shape deviation control in WAAM

Shape Predictive
transformation modelling using
modelling ML

Gather layer Obtain In-plane

Point cl : L
oint cloud boundary point deviation data

v' We develop a framework that enables automated deviation modelling from point
cloud data collected across different processes and shapes in WAAM.
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Shape deviation control in WAAM

Gather layer Obtain In-plane
boundary point deviation data

Point cloud

Shape
transformation
modelling

Predictive
modelling using
ML




Assessing the deviation: Benchmark test artifact and
processing parameters

v" Processing parameters in the experiment

Specifications | A |
[EETTE Fronius TransPulsSynergic 3200 CMT R
GMAW power source

Parallel overlapping

15.3

182.6

420

6000

50-90

5690 (LNM MoNiVa)

@ 1.2 mm

19

45 mm height

6 mm thickness: @20, 30, 50, 80, 20
10 mm thickness: @50

18 mm thickness: @50
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Assessing the deviation: Qualitative analysis

v Postprocess measurement data for inspecting part geometries
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Shape deviation control in WAAM

Gather layer Obtain In-plane
boundary point deviation data

Point cloud

Shape
transformation
modelling

Predictive
modelling using
ML
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Shape transformation for deviation modelling

, Nominal Shape V°
O We transformed point cloud measurements 20, 90 P

U Mathematical relationship
Actual Shape V*
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Shape transformation for deviation modelling

v" Deviation profiles of cylinder A1 with a nominal
radius of 60 mm at different layers
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Shape deviation control in WAAM

Gather layer Obtain In-plane
boundary point deviation data

Point cloud

Shape
transformation
modelling

Predictive
modelling using
ML
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Predictive deviation modelling using machine learning

O We utilized Random Forest method
v Inputcell: 1,0, z

v Output cell: deviation

O We used various metrics to evaluate the models’ performance

v' Mean Absolute Error: MAE = 2i=1';’i‘yt'

Yi=Vt
Yi

Xi-
v Mean Absolute Percentage Error: MAPE = -

X 100

=t .




Predictive deviation modelling using machine learning

v" We randomly selected 60% of the input data as training set

v' We compared predicted values and observed values

O Train data

O Test data

MAE

0.015
0.014
0.011
0.007

e

Prediction Errors

RZ

99.76
99.81
99.89
99.91

MAPE (%)

8.19
7.37
5.78
3.26
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Predictive deviation modelling using machine learning

v The prediction results on two cylinder radii: A1 (60 mm) and A4 (15 mm)

v" The main patterns in shape deviation are captured

O Observed deviation
— Predicted deviation
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summary

0 We develop a new framework to model the systematic deviations in WAAM
with limited experimental runs.
v" The method combines a transformation perspective and a ML method.
v Random forest predicts the shape deviation of WAAM process with a
mean absolute percentage error of less than 8.2%.

O The deviation in a case study (cylindrical shapes) was presented — the
methodology will be implemented in other geometrical features systematically.

Broader Impacts

0 Smarter control of WAAM with the potential of practical application for a large
community of AM users.

O This study will enable designers to evaluate the geometrical performance of
WAAM products prior to manufacturing.
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On-going research — Model Transfer

v" Deviation modelling of cylinders under new processes

Specifications [ B | gom
GMAW

Weaving strategy

14.1-15.8

105-142

SS 316L
Wire dimeter (mm) @ 1.2 mm
Number of layers 25




On-going research — Model Transfer

3@m

v Deviation modelling of new geometrical features and processes




On-going research — Model Transfer

O How can we transfer the model across processes in WAAM characterized by
different process conditions without repeating previous procedures?
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Assessing the deviation: Observation

v There are variations in the deformation profile along the wall
height from the 1st to the 19t layer
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Shape transformation for deviation modelling

v" Deviation profiles of cylinders (A1, A2, A3, and A4)
with nominal radius of 60, 40, 25, and 15 mm
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