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Motivation
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CO2 emission

Electrification

Fossil fuel

Driving comfort

Cost of ownership



Industrial aim
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CVT: Continuously variable transmission

• Chemical domain
• Mechanical domain
• Electrical domain

• Thermal domain
• Material domain

Integrated energy and thermal management of CVT-based electrified powertrains

• Energy efficiency
• Cost
• Performance

CVT

[1]

[1] Vehicle Thermal Management Systems Conference and Exhibition - VTMS 13



Scientific aim
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Modular and scalable system architecture

New control-oriented models

Novel optimal control method

Detailed requirements and specifications



1. Energy management system
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BERICE: Engine
Batt: Battery
PE: Power electronics
EM: Electric machine
EV: Electric vehicle
MA: Motor assist
CH: Charging
BER: Brake energy recuperation



Total energy losses
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Opportunities:
• Engine exhaust heat
• PEEM waste heat

PEEM: Power electronics and electric machine



2. Thermal management system
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• Combined PEEM and CVT 
• Exhaust gas waste heat recovery 
• Electric path waste heat recovery 



Integrated global system (1+2)
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Sub-system 1: Waste heat recovery with cold-start 
conditions

• Significant impact of cold-start conditions: 7.1%
• Remarkable fuel consumption reduction with 

waste heat recovery: 13.1%
• Material: thermoelectric generators with high 

Seebeck coefficient and low electrical resistivity 
and thermal conductivity materials
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Sub-system 2: Battery thermal management
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Results

• Cooling power: PMPC << POn/Off
• Material: using phase change material to warm up and cool down the battery

Note: for a single cell



Sub-system 3: Transmission transient thermodynamics
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Results
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• Cold impact: energy consumption 
up to around 2.9%

• Material: component encapsulation
• Material: moving to low viscosity 

transmission fluid

NEDC: New European Driving Cycle
WLTC: Worldwide Harmonized Light Vehicles 
Test Cycles

Warm
Cold



Energy balance

• Using waste heat from the electric drive to 
warm up the transmission

Increase transmission lifetime and energy 
efficiency



Sub-system 4: Co-design of EM and CVT

Models: non-linear models
Optimization strategy: nonlinear programming

- sub-optimal design parameters
- long computation time

Plant Design

Control Design

Plant & Control 
Design

Alternating Simultaneous

Models: convex models
Optimization strategy: convex programming

+ optimal design parameters
+ optimal thermal topology
+ short computation time

Cost= weighting factor1*        + weighting factor2*(           +             +          ) 

subject to:



Modeling and validation

High-fidelity GT models
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Input power map for  = 0.5

Control models Measurement data: E-Golf with CVT

Increasing level of accuracy/complexity

Increasing level of abstraction



Compact ECVT

• Material analysis
o Reduce high cost/volatile heavy metals and rare earth content (e.g., Cobalt, 

Neodymium-Iron-Boron (NdFeB)) in EM due to max. torque reduction
o Selection of cooling medium for the integrated cooling system (conductivity, 

corrosion, oxidation, and viscosity) 

Ratio coverage

Center distance

Actuation • Highly integrated
• Energy-efficient
• Cost-effective
• Compact
• Comfortable

Power rating

DimensionsMagnets

Cooling

ECVT

Asymmetrical design
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Conclusions
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• Created an integrated system architecture for CVT-based electrified powertrains

• Developed relevant control models and optimal controllers

• Including controls in the early design phase

• Generating generic system-level representations 

• Bridging the gap between component-level and system-level

Industry



Thank you
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