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Natural Fibre Composites; Mechanical performance
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Material stiffness efficiency in tension Material efficiency in (plate) bending 
(or buckling)

Natural fibres are also a light-weight alternative



CELC: A MARKET REALITY



powerRibs®

LIGHTWEIGHT AUTOMOTIVE INTERIORS

17/12/2018 4
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powerRibs® FOR MOTORSPORTS

Automobiles Gillet, Pikes Peak 2018, with ampliTexTM+ powerRibs ®body parts

Electric GT Tesla with ampliTex™+powerRibs™ natural fiber bodywork 



And what about the embedded energy?

Some data on energy utilisation for fibre production:
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Impact on global warming mitigation
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Low-Carbon 
Materials

Less energy usage 
from light-weight

The Economist, Dec 1, 2018



Natural Fibre Composites; Strengths and weaknesses
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Lower the cost of flax fibre preforms – the SIM 

FlaxPreComp project

Aart W. van Vuure 9



Performance of scutched fibre composites
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Benefit of added combing steps

12.06.2014 Aart W. van Vuure 11



Enzymatic treatments, a.o. to replace dew retting
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PhD Jana De Prez 2019

FE = 
Amount of long fibers extracted (g)

Total amount of flax stems (g)
 

TE = 
Amount of long fibers extracted (g)

Time needed for extraction (min)
∗ 2 

EE = FE * TE 

 
Figure 1. Extraction Efficiency of enzymatic treatments at pH 5.0 

 

Figure 1. Comparison of Extraction Efficiency of enzymatic treatments at pH 5 and pH 6.5 
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Hand extraction limits damage

References

Scutched and 
hackled Enzyme treated

E up to 84 GPa !

Strength 
up  to 
800 MPa

Impregnated 
fibre bundle 
tests (IFBT)



Ways to improve Durability, particularly 

moisture sensitivity
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1) Choose less moisture sensitive natural fibres, e.g. bamboo fibre

2) Lower the Equilibrium Moisture Content (EMC) of the fibres; chemical

treatment (EU H2020 BBI Ssuchy)

3) Reduce the swelling of the fibres; constraint from the matrix? (EU Marie 

Curie FibreNet)

4) Turn water inside the fibres into an advantage, process with water inside

the fibres; pre-swollen fibres (Ssuchy)

5) Coatings (of fibres or composite); slow down water diffusion and mitigate

peak loads (Ssuchy)



Moisture resistant fibres: Bamboo fibres for Composites

Bamboo Fibre Extraction
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Moisture Sensitivity of Bamboo Composites
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Modulus does not decrease much!
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55% RH

90% RH

UD FLAX composite:

2nd study

Linked to lignin content

PhD Delphine Depuydt 2018

PhD  Lina Osorio



Flax fibre composites; treatments to lower the EMC

50% RH 75% RH 90% RH

untreated 2% 4% 8%

4 wt% alkali 2% 4% 7%

10 wt% glyoxal 1.5% 4% 3.5%

20 vol% DMDHEU 2% 3% 10%
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PhD Dieter Perremans



Aldehydes: A “new” class of treatments

Crosslinkers

Benzaldehyde Terephtaldehyde Glutaraldehyde
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Conditions:

• 10 wt% in THF @ room temp.

• Fibres soaked for 10 min

• Dried in oven at 80°C
PhD Kevin Hendrickx, 2018



Dynamic vapour sorption – EMC

Decreased EMC

@ 90% RH 

21

Di-aldehyde cross-linkers  are more efficient



Backcalculated stiffness of UD treated fibre 

composites
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Embrittlement due to crosslinking
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Next: alternative treatments

(PhD Gilles Koolen)



Enzymatic treatment can also lower water 

uptake
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Table 1. Moisture absorption results of composites impregnated with enzymatically treated fibers compared to green 
flax fiber composites: equilibrium moisture content (%) and diffusion coefficient (mm²/s) 

Treatment Equilibrium moisture content 

(%) 

Diffusion coefficient  

(10-5 mm²/s) 

GR 6.05 ± 0.75 9.04 ± 1.05 

Sc 4.55 ± 0.22 2.53 ± 0.19 

NS  5.40 ± 1.35 1.68 ± 0.60 

MPE 4.49 ± 0.16 1.92 ± 0.27 

PAn 4.01 ± 0.15 1.00 ± 0.19 

Pz 4.65 ± 0.17 5.39 ± 0.73 

XTl 4.30 ± 0.51 3.39 ± 0.47 

  

 
80% RH @ 80°C



Novel water-insensitive curing systems for biofiber reinforced 
polyester composites
With Ssuchy partners Akzo Nobel and NPSP (Netherlands)

Next: non-dried natural fibres
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New Perspective on Water Uptake 

Long term average indoor conditions 20°C and 50%RH

Hypothesis: Durability better for damp natural fibres equilibrated at Equilibrium 
Moisture Content of average environment: pre-swelling

* Less swelling, shrinkage, cracking

Flax-polyester

Data courtesy of AkzoNobel
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Do un-dried fibres have higher durability?

Aart W. van Vuure27

UT DT

Images 
after half 
cycle at 
high 
humidity

Already cracks for 
dried fibres, also 
inside bundles!

DT = dried transversal

UT = undried transversal

PhD Morissa Lu

%RH:  50     89     32      89      32      89      32      89      32     89     32

(40°C)



CMG expertise: Studying and improving the Fibre Matrix Interface; 

Durability enhancement (Dr. Carlos Fuentes)

- An integrated physical-chemical-micromechanical approach

1) Physical characterization: surface energy components

from contact angle measurements

2) Surface chemistry: XPS, ToF-SIMS

3)  (Micro)-mechanical testing of adhesion

(single fibre pull-out  & transverse UD 3-point bending)

Tools for selecting fibre treatment or matrix modification

For improvement of wetting and adhesion

X-ray photoelectron

spectroscopy (XPS)
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Micro 
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Conclusions

Aart W. van Vuure29

1) Scutched-only flax fibres can be a low cost alternative with equivalent 
properties to hackled flax

2) Enzymatic treatments can replace retting

3) Extraction by hand shows hidden potential of flax fibre (E = 85 GPa)

4) Bamboo fibres loose much less stiffness in wet condition than flax fibres

5) Di-aldehyde treatments show significantly lower EMC for flax fibres, but 
embrittle the fibres

* Next other treatments

6) Making composites with undried, pre-swollen fibres, gives significant 
improvements in durability for flax fibre composites

• Plus save energy and time for not having to dry
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Embodied energy of building materials

• Difference in embodied energy/kg between GFRP and
NFRP is smaller than expected because of large 
contribution of polymer (~80 - 130 MJ/kg);

• Glass ~55MJ/kg, flax ~5-10 MJ/kg


